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Orthostructures from Sesquilinear Forms. A Primer 
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We make a linkage with the "ultimate" generalization of Hilbert space, an R- 
module with an orthogonality relation, and certain constructs due to Foulis and 
Randall and other related structures suggested by Cattaneo, Franco, and Marino. 

1. INTRODUCTION 

The primordial mathematical model of the logic of a quantum mechan- 
ical system is the lattice of closed subspaces of a complex infinite-dimensional 
Hilbert space. The inner product (sesquilinear form) is instrumental in pro- 
viding a sense of negation (orthocomplementation M ~ M ' )  by providing 
a relation of orthogonality between subspaces. The central role of the ortho- 
modular identity is now well recognized. From this seminal model, many 
generalizations have evolved. One notable line of research has been devel- 
oped by Foulis and Randall (1972, 1973). In the present paper, we make a 
linkage with the "ultimate" generalization of Hilbert space, an R-module 
with an orthogonality relation, and certain constructs due to Foulis 
and Randall and other related structures suggested by Cattaneo et al. 
(1987). 

2. LINEAR ORTHOGONALITY RELATIONS ON MODULES 

Let R be a ring with unity 1 and let RM be a left R-module. Let Lat(RM) 
denote the complete modular lattice of submodules of M ordered by set 
inclusion. A relation _1_ on M is called a linear orthogonality relation on M 
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provided 

if x• then y•  for all x, y in M 

if x3_y and x• then x_L (y+z) 

if x l y ,  then x_Lay for all a in R 

x• for all y in M iff x = 0 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

This last condition is one of "nondegeneracy." If  S is any subset of M, define 
the orthogonal of S by S • = {x~MIx3_s for all seS}. Clearly, a nondegener- 
ate symmetric relation 3_ on the module M is a linear orthogonality relation 
if and only if {x} • is a submodule of M for all x in M. Call the pair (RM, • 
an orthomodule. The orthogonality relation distinguishes two kinds of ele- 
ments in M. If  x e M  and x_l_x, then x is called isotropic; otherwise x is 
called anisotropic. Call (RM, _L) anisotropic provided M admits no nonzero 
isotropic elements. 

The orthogonality relation also distinguishes various families of sub- 
modules. We present a taxonomy. Let (RM, • be an orthomodule. The 
sere• submodules are given by 

L~(RM, 3_) = {Fr F • = (0)} 

When we restrict the orthogonality relation to a semisimple submodule, 
we obtain another orthomodule. Now, Lss(RM, _1_) is partially ordered by 
inclusion and is a bounded poset [(0) and M belong] with an orthogonality 
relation. Moreover, any orthogonal family of semisimple submodules has a 
join in Lss(RM, 3_). This poset is "algebraic" in the sense that any upward- 
directed family of semisimple submodules has a join in Ls~(RM, 3_). 

In the Hilbert space example, we are interested in the closed subspaces. 
This leads us to consider the orthoclosed submodules 

Lc(RM, 3_) = {F~ Lat(RM)l F =  F l i }  

Here we have a complete lattice with an involution; the meet is ~ F~ = 0 F~ 
and the join is [_J F , = ( ~  F~) •177  F~) •177 where the F~ are all dosed. 
The map Fv--~F • is not necessarily an orthocomplementation on Lc(RM, 3_). 
We could restrict our attention to the closed and semisimple submodules, 
but the orthomodularity we seek actually resides elsewhere. 

Let (RM, 3_) be an orthomodule. A submodule F o f  M is called splitting 
if F +  F • = M. Let 

Ls(RM, A) = {F6 Lat(RM) IF+ F • = M} 
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Clearly (0) and M belong to Ls(RM, • so we have a bounded poset. Note 
that Ls(RM, • I )  and F • is splitting whenever F is. A useful 
characterization of splitting submodules is given by the following result. 

Theorem 2.1. Let (RM, • be an orthomodule. Then F is a splitting 
submodule of  M if and only if for all submodules N of M with F__ N we 
have N =  F +  (N n F• 

Proof. Suppose first that F is splitting. Let N be any submodule of M 
containing F. Then F__ N, so by the modular law, (F v G) ^ N = F v (G A N) 
for any submodule G. Choose G=F x. Then (F+F • n N=F+ ( F i n  N). 
That is, 

N = M n N = (F+  F • n N = F +  (F l n N) 

Conversely, suppose the condition. Take M=N~_F. Then M =  
F + ( M n F •  • The proof is complete. [] 

It follows easily now that if F is splitting and F~_N with N n  F z =  (0) 
then F =  N; that is, F is maximal in the set of all submodules N with 
N n F l =  (0). It also follows that 

Ls(RM, _1_)~-Lc(RM, •  Ls~(RM, I )  

Theorem 2.2. Ls(RM, A_) is an orthomodular poset. 

Proof First suppose F and G are splitting with FIG. Then F _  G • so 
G• z n F •  Thus 

M = G + G •  • nF•  • 

That is, G + F is splitting and must be the least upper bound of F and G in 
Ls(RM, l ) .  Therefore this poset is orthogonally disjunctive. 

Next, the map F~--~ F • on Ls(RM, • has the properties F =  F "  • F _  G 
implies G• • F n F l = ( 0 ) ,  and F + F • 1 7 7  Finally, for the 
orthomodular identity, let F _  G in Ls(RM, A_). Then G=F+ (G n F • = 
F + ( G • 1 7 7 1 7 7  • and we are done. [] 

We pause in our development to offer some examples. The most natural 
way to generate a linear orthogonality relation is by using some kind of 
"inner product." 

Example 2.3. Take any classical inner product space, real, complex, or 
quaternionic, complete or not, (V, ( . , . ) ) .  Define x•  when (x, y ) = 0  for 
x, y e  V. This yields a linear orthogonality relation on V (Gudder, 1974; 
Gudder and Holland, 1975). 

More generally, take R a ring with involution * and let �9 be a nondegen- 
erate orthosymmetric [~(x, y) = 0 implies ~ (y ,  x) = O]*-sesquilinear form on 
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an  R-module M. Define x_l_y iff O(x, y) = 0. This produces a linear ortho- 
gonality relation on M. Call (M, ~ )  a quadratic module (Piziak, 1973). 

Example 2.4. For a concrete example, let R = 7/, the ring of integers, 
and let M =  {(a~, a2, a3 . . . .  ) lateZ, ai=0,  except for finitely many i}. Then 
M is a 7/-module under slotwise operations. Define O((at), (bi))= 

o o  ~i=, a,bi. Then ~ is a nondegenerate symmetric bilinear form on M which 
admits no isotropic elements. Thus (M, ~ )  is a quadratic Z-module. In 
particular, Lc(M,  ~ )  is a nonmodular orthocomplemented lattice. Note that 
this module is free, since e~ = (1, 0, 0 , . . .  ), e2 = (0, 1, 0 , . . .  ) . . . .  is a basis. 
Consider another sequence fo=el  , . . . ,fk =el + e2 +" �9 " + e k - - k e k +  l . One 
computes that 

~ ( fo , J j )  = 1 for all j>_0 

�9 (f,- ,fy)=0 for air i,j>_.l, i # j  

r =j+j2  for all j >  1 

and that {j~,fl ,f2, �9 �9 �9 } is another basis for this module. Let 

F =  span{J] ,j~ ,f5 . . . .  } 

G=  span{J~,J~,f6 . . . .  } 

H =  span {A ,A,sfi . . . .  } 

Then F= G • and G = F  • so F and G are closed but not splitting. 
Moreover, H• H •  and Ls(M,  eP) is an orthomodular poset 
which is not a lattice. 

3. ORTHOGONAL SETS IN ANISOTROPIC ORTHOMODULES 

In this section, for simplicity, let (RM, l )  denote an anisotropic ortho- 
module. Let S be an arbitrary submodule of M. Various kinds of orthogonal 
sets can be distinguished and will be used in the next section to generate 
ordered sets. 

1. The orthogonal subsets o f  S, •(S, _L): 

d)(S, _t_) = {A ~ S \ ( 0 ) I x ,  y e A ,  x # y  implies x_Ly} 

This set is partially ordered by inclusion and has the property that any 
subset of an element of (_0(S, 1 )  is again an element of ~0(S, 1).  The union 
of any upward-directed family of elements in 0(S, .1_) is in O(S, _L), so 
0(S, _1_) is inductive and hence has maximal elements. We shall take single- 
tons to be orthogonal sets. 
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2. The maximal orthogonal subsets o f  S, .A/do(S, •  

�9 /gO(S, L ) =  {A e(P(S, A_)IA ~_B, Bedo(S, A_) implies A=B}  

3. The total orthogonal subsets of  S, Y-do(S, L):  

Y-(_9(S, L ) =  {Aedo(S, i ) l x e S ,  x •  implies x=0}  

4. The basic orthogonal subsets of  S, ~do(S, _1_): 

~(o(S, 4 ) =  {Aedo(S, •177177  

5. The regular orthogonal subsets of  S, ~do( S, L) : 

~do(S, •  = {A e do(S, ]_)IA = B w C, B n C = ~5 implies B • = C +} 

6. The Dacey orthogonal subsets of  S, @do(S, 3-): 

~do(S, 3-) = {A e do(S, 3-)IA =-x • w y  • x, y e M  implies x i y )  

The following facts are easily established. 

Lemma 3.1. Let (RM, 3_) be an anisotropic orthomodule and let S___ M. 
Then: 

(i) I f  A e J/IC(S, l ) ,  then A i c~ S _  (0). 
(ii) If  F is a submodule of  M and A e J/[do(F, i ) ,  then Al  c~ F =  (0). 
(iii) ~r162 • )~_~do(M, 3_). 

Theorem 3.2. Let (RM, 3_) be an anisotropic orthomodule and let 
S ~_ M. Then 

~ e (  S, 3_)= ~do( S, • 

Proof Let Ae~do(S, • We shall show Ae~Ido(S, 3_). Suppose A =  
B w C with B c~ C=  ~ .  We show B •177 = C • Now A is an orthogonal set, so 
C~_B L and so BI-L~_C l or equivalently C i ~ B  • It suffices to show 
B• •177 Take x e B  • Show that x i y  for all y in C • Take any y in C 1. 
Then B • 1 7 7  • and C • 1 7 7  a n d A = B w  C~_B •177 w C •177 • w y  • But A 
is Dacey, so x3_y. 

Conversely, suppose A is regular and suppose A _ x  I u y  • Take B=  
A c~x ~ and C=A\B .  Then A = B w  C and Bc~ C = ~ .  Since A is regular, 
C •  •177 Now clearly B~_x • We claim Cc_y'. Let zeC. Then zeA\B ,  so 
zeA and zq~B. Then z e x ~ w y  l ,  so z ex  I or zey  • But if zex  • then 
z e A c ~ x l = B ,  a contradiction, so zey  • Thus x e B  • and y e C •  • 
hence x •  y. �9 



876 Piziak 

Lemma 3.3. Use the assumptions above. If Ae~(9(S,• and 
Be(9(S, _1_) with B~A, then B-L = (0). 

Proof Now A _ B  means B=A w (B\A). But any superset of a Dacey 
set is Dacey. Thus B is Dacey and hence regular. Being regular, A •177 
(B\A) • Thus 

B "  = (14 u ( B \ A ) )  • = A • c~ ( B \ A )  • = A • c~ A -L• = (0) 
by anisotropy. �9 

The next theorem summarizes the relationships between the various 
kinds of orthogonal subsets of an anisotropic orthomodule. Since the way 
has been prepared, the details of the proof will be omitted. 

Theorem 3.4. For an anisotropic orthomodule (RM, _1_), 

~dO(M, 1 )  =~O(M,  3-) ___ ~gO(M, 3-)=J-(P(M, _k)=~r •  

4. FOULIS-RANDALL SUBMODULES OF AN 
A N I S O T R O P I C  O R T H O M O D U L E  

In this section, let (RM, • denote an anisotropic orthomodule. There 
is a natural mapping ~ : (~(M, •  --+ Lc(M, •  given by ~(A) = A •177 Clearly, 
~g preserves order and ~/(A)=M for all Ae~(O(M, • The image of V 
defines the collection of Foul• submodules of M. So a submodule 
F of M is a Foul• submodule iff there is an Ae(~(M, • such that 
A•177 Let 

FR(M, •  {FeLat(M)lF=A • for some A60(M, • 

Clearly, MeFR(M,  •  and we agree to accept (0)eFR(M, •  also. 

Theorem 4.1. FR(M, • is completely orthogonally disjunctive. That 
is, let {Fa} be a family of pairwise orthogonal submodules in FR(M, • 
Then sup{Fa} exists in FR(M, •  and moreover sup{F~} =[_] F~ as com- 
puted in Lc(M, • 

Proof Let {F~} be a family of pairwise orthogonal elements in 
- • A~eC(M, • Let A= FR(M, 3_). Then for each a, Fa -A~ for some 

[) A~; we claim Ae(9(M, • Let x, yeA, x#y .  Then there exist a and 13 
with xeA~, yeA, .  If a =/3, x and y are in the same orthogonal set, so x• 
If a #13, then F~,• so Fa~_F~. That is, A~• so Aac_A~, whence 
x• Now let G = A " .  Then GeFR(M,  • Also, A,~_A for each a, so 
A~• "• Thus F~_G for all a, and so G is an upper bound for {F,} in 
FR(M, 3_). Is G the least upper bound? Let HeFR (M,  L) with H~_F~ for 
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all a. Then H ~ _ F ~ A a  for all a, so H---U Aa=A. Thus H=H•177 •177 
G, so G is the least upper bound of the {F~} in FR(M, • Finally, 

LJ F,~ = (E F,~) -L• = ( U  F,~) LL = (U F,,) L• = ( ~  F~) • 

=(~ A~)• A~)L•177177 �9 

To establish the next theorem we need the following result. 

Lemma 4.2. Let F~FR(M,  _1_). Suppose F= A 1• for some A ~(9(M, I ) .  
If BeJZ(9(F • I ) ,  then A u BeJg~P(M, _1_). 

Proof Since B ~ F •  • we have A n B = ~ j  and A t.)B~gO(M, • 
Then (A u B) •177 = (A • n B •177 = (F • n B •177 Let 0 r  • n B • Then 
x e F "  and xEB • so B u  {x} is in (9(F', • By maximality, xEB, so 
x ~ B "  riB, so x=0 ,  a contradiction. Thus F •  B ' = ( 0 ) ,  so (A u B) •177 
(6) • = M, hence A u B is an Jt'g~(M, _1_), as was to be shown. �9 

Recall that a local complement of Fin FR(M, •  is any G in FR(M, 3_) 
with F I G  and sup{F, G} =M.  With the help of the lemma above, the next 
theorem is straightforward, so the proof will be omitted. 

Theorem 4.3. Let F, G~FR(M, _L) with F=A •177 G=B •177 Then Fis  a 
local complement of G iff A u B~JCgO(M, 3_). 

We culminate our development in this section with the following result. 

Theorem 4.4. FR(M, _L) is an orthologic; that is, the following hold: 

(i) If {F~, F2, F3} is a pairwise orthogonal set, then Fj3-sup{F2, F3}. 
(ii) Every FeFR(M,  •  has at least one local complement in 

FR(M, • 

The proof follows familiar lines laid down by Foulis and Randall. 
In general, it does not appear to be possible to prove that if 

FeFR(M,  • then F •  Z). The best this author can offer at this 
point is the following. 

Lemma 4.5. Let F~FR(M,  •  with F=A l-L. Suppose F • is in 
FR(M, • Then there exists B~_A, BeJ~(~(M, 3-), such that 

F '  = ( B \ A )  • 

There are other "Foulis-Randall-like" submodules that are of interest, 
but space does not allow us to pursue them here. The interested reader may 
wish to study the collection of mighty Foulis-Randall submodules: 

MFR(M, 3_)= {FeLa t (M) IF=A •177 for all AeJI~O(F, • 
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or the collection of super-Foul• submodules 

SFR(M, 1 ) =  {FeLat (M)[F=A • for all AeJI(9(F, •  

and F • = B  •177 for any BeJg(9(F • l ) }  

Clearly, we have a nesting 

SFR(M, I ) _ M F R ( M , / ) ~ F R ( M ,  •  Z) 

Piziak 

5. DACEY MODULES 

As before, let (RM, L) be an anisotropic orthomodule. Call this ortho- 
module Daeey iff every maximal orthogonal set is Dacey. 

Lemma 5.1. Let (M, _L) be Dacey and F e F R ( M ,  L) with F=A • for 
some Ae(9(M, _k). Let B~_A with BeJg(9(M, • Then F -L is in FR(M, I )  
and F • = (B \A)  •177 

Proof Suppose F=A •177 for some AeCO(M, • Use Zorn's Lemma to 
extend A to B in ~l~O(M, A_). Then B = A  w (B\A)  and A n (BkA)=~J and 
B is Dacey, whence regular. Thus A j-• -- (B \A)  • That is, F =  A •177 = (B \A)  ~, 
so F •  •177 �9 

Theorem 5.2. Let (M, Z) be an anisotropic orthomodule. Then the 
following statements are all equivalent: 

(i) (M, •  is Dacey. 
(ii) Every F in FR(M, Z) has a unique local complement which is in 

fact F ~. 
(iii) FR(M, _L) is an orthomodular poset under F ~ F  • 

Proof (5.2.1) ~ (5.2.2). Suppose (M, L) is Dacey. If Fe FR( M,  l ) ,  
then F ~ e F R ( M ,  1)  by the above lemma, and F • is a local complement 
since F~_F •177 so F•  -~ and F u F Z = ( F + F • 1 7 7 1 7 7 1 7 7  nF•177177 • 
M. Now suppose G is some local complement of F. Then GLF and G o F =  
M. Thus G~_F • Now G=A ~• and F = B  •177 for orthogonal sets A and B. 
Note A ~A l ~ =  G _  F ~=  B • so A w B is an orthogonal set and A c~ B=  ~ .  
Also, M =  G u F = (A w B) • so A u B is maximal orthogonal, hence Dacey, 
hence regular. Thus A • ~ = B • i.e., G = F i. 

(5.2.2) =:- (5.2.3). Left to the reader. 
(5.2.3) =~ (5.2.1). Suppose FR(M, L) is an ortbomodular poset under 

F~-+F • Let Ae~I(9(M, l ) .  We shall show A is regular and hence Dacey. 
Let A = B w C  with B n C = ~ .  Let F = B  • and G = C  •177 Now B~_C • 
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since A is an o r thogona l  set, so B x I ~ _ C  x, so F ~ C X = G  • By or tho-  
modular i ty ,  G X = F u ( G • oaF• so 

G = G • 1 7 7  (G • c ~ F • 1 7 7  -L n (G • n F •  • 

= F  • n ( G u F )  • 1 7 7  l n (Gu F)  

N o w  M = A • 1 7 7 1 7 7 1 7 7  G, hence M = F u G ,  and  so 
G = F •  • so G I = F I •  i.e., C A = B  •177 . Therefore  A is 
regular.  [] 

Finally,  we note  tha t  the Dacey  condi t ion is tied into the s t ronger  types 
o f  Fou l i s -Randa l l  submodules .  

Theorem 5.3. Let (M, 2-) be an anisot ropic  or thomodule .  Then (M, 2-) 
is Dacey  if and only if M F R ( M ,  L )  = F R ( M ,  2_). 
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